Metabolomics analysis: Finding out metabolic building blocks
نویسندگان
چکیده
In this paper we propose a new methodology for the analysis of metabolic networks. We use the notion of strongly connected components of a graph, called in this context metabolic building blocks. Every strongly connected component is contracted to a single node in such a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a considerably reduced number of nodes. The property of being a directed acyclic graph brings out a background graph topology that reveals the connectivity of the metabolic network, as well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for the discovery of functional metabolic relations. Our methodology has been applied to the glycolysis and the purine metabolic pathways for all organisms in the KEGG database, although it is general enough to work on any database. As expected, using the metabolic DAGs formalism, a considerable reduction on the size of the metabolic networks has been obtained, specially in the case of the purine pathway due to its relative larger size. As a proof of concept, from the information captured by a metabolic DAG and its corresponding metabolic building blocks, we obtain the core of the glycolysis pathway and the core of the purine metabolism pathway and detect some essential metabolic building blocks that reveal the key reactions in both pathways. Finally, the application of our methodology to the glycolysis pathway and the purine metabolism pathway reproduce the tree of life for the whole set of the organisms represented in the KEGG database which supports the utility of this research.
منابع مشابه
Correction: Metabolomics analysis: Finding out metabolic building blocks
[This corrects the article DOI: 10.1371/journal.pone.0177031.].
متن کاملUnsupervised Discovery and Comparison of Structural Families Across Multiple Samples in Untargeted Metabolomics
In untargeted metabolomics approaches, the inability to structurally annotate relevant features and map them to biochemical pathways is hampering the full exploitation of many metabolomics experiments. Furthermore, variable metabolic content across samples result in sparse feature matrices that are statistically hard to handle. Here, we introduce MS2LDA+ that tackles both above-mentioned proble...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملMetabolomics Application in Exercise Metabolism Research: A Review Study
Metabolomics, is a comprehensive measure of small metabolites (<1500 Da), which has attracted enormous attention in the last two decades. Metabolomics, in particular investigates unique biochemical fingerprints left behind by specific cellular processes, which represent the metabolic status. Exercise metabolism researchers have started to use this method since 2007. Metabolomics has been used t...
متن کاملMetabolomics in drug target discovery.
Most diseases result in metabolic changes. In many cases, these changes play a causative role in disease progression. By identifying pathological metabolic changes, metabolomics can point to potential new sites for therapeutic intervention. Particularly promising enzymatic targets are those that carry increased flux in the disease state. Definitive assessment of flux requires the use of isotope...
متن کامل